Algorithm for Enumerating Pairwise Disjoint
Mathematical Foundations

Pu Justin Scarfy Yang
August 03, 2024

1 Introduction

This document outlines a theoretical algorithm to enumerate all pairwise disjoint
mathematical foundations. The approach leverages the Unicode standard to
generate unique symbols, create distinct axiomatic systems, and ensure that
each foundation is disjoint from others. The algorithm will be presented in a
step-by-step manner, providing both a conceptual overview and detailed pseudo-
code.

2 Algorithm Overview

2.1 Objective

The objective of this algorithm is to generate an infinite sequence of pairwise dis-
joint mathematical foundations, each with unique symbols, axioms, and formal
structures.

2.2 Key Components

e Symbol Generation: Using Unicode characters to create unique sym-
bols.

e Axiomatic Systems: Formulating distinct sets of axioms for each foun-
dation.

e Disjointness Verification: Ensuring no overlap between symbols or ax-
ioms of different foundations.

e Formal Language Development: Creating unique formal languages
for each foundation.

3 Algorithm Steps

3.1 Step 1: Initialize the Global Registry

Initialize a global registry to keep track of all used symbols and axioms to ensure
disjointness.

global_registry_symbols = set ()

global_registry_axioms = set ()

3.2 Step 2: Generate Unique Symbols

Define a function to generate a unique set of Unicode symbols for each new
foundation.

def generate_unique_symbols(n):
symbols = set ()
while len(symbols) < n:
new_symbol = fetch_new_unicode_symbol ()
if new_symbol not in global_registry_symbols:
symbols.add (new_symbol)
global_registry_symbols.add(new_symbol)
return list (symbols)

def fetch_new_unicode_symbol ():
import random
return chr(random.randint (0x1F600, 0x1F64F)) # Ezample range for new symbol

3.3 Step 3: Define Axioms

Create axioms using the generated symbols and ensure they are unique by check-
ing against the global registry.

def define_axioms (symbols, axioms_templates):

axioms = set ()
for template in axioms_templates:
axiom = template.format (xsymbols)

if axiom not in global_registry_axioms:
axioms . add (axiom)
global_registry_axioms .add (axiom)
return axioms

Example templates

axioms_templates = |
Ty A=A,
P Ad =AY

3.4 Step 4: Create Formal Language
Develop a unique formal language using the generated symbols.

def create_formal_language (symbols, syntax_templates):
syntax_rules = set ()
for template in syntax_templates:
rule = template.format (xsymbols)
syntax_rules.add(rule)
return syntax_rules

Fxample templates
syntax_templates = |
}>)

SIEET

3.5 Step 5: Verify Disjointness

Ensure that each newly created foundation is pairwise disjoint from existing
ones by checking symbols and axioms.

def verify_disjointness (new_symbols, new_axioms):
for symbol in new_symbols:
if symbol in global_registry_symbols:
return False
for axiom in new_axioms:
if axiom in global_registry_axioms:
return False
return True

3.6 Step 6: Generate Foundations

Combine the above steps to generate an infinite sequence of pairwise disjoint
foundations.

def generate_foundations (num_foundations, symbols_per_foundation):
foundations = []
for _ in range(num_foundations):
symbols = generate_unique_symbols(symbols_per_foundation)
axioms = define_axioms (symbols, axioms_templates)
formal_language = create_formal_language (symbols, syntax_templates)
if verify_disjointness (symbols, axioms):
foundations .append ({

’symbols’: symbols,
“axioms’: axioms,
"formal_language’: formal_language

1y

return foundations

4 Example Output

An example of how the generated foundations might look:

foundations = generate_foundations (3, 10)
for idx, foundation in enumerate(foundations):
print ({”Foundation-{idx+1}:”)

print (”Symbols:”, foundation [’ ’symbols’])
print (” Axioms:” , foundation[’axioms’])
print (”Formal - Language:” , foundation[’formal_language’])

5 Conclusion

This document presents a theoretical algorithm for enumerating an infinite se-
quence of pairwise disjoint mathematical foundations using UnicodeLang. By
generating unique symbols, defining distinct axiomatic systems, and verifying
disjointness, this algorithm lays the groundwork for extensive mathematical ex-
ploration and innovation.

	Introduction
	Algorithm Overview
	Objective
	Key Components

	Algorithm Steps
	Step 1: Initialize the Global Registry
	Step 2: Generate Unique Symbols
	Step 3: Define Axioms
	Step 4: Create Formal Language
	Step 5: Verify Disjointness
	Step 6: Generate Foundations

	Example Output
	Conclusion

